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Self-avoiding walks interacting with a surface 
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t: Royal Military College, Kingston, Ontario, Canada 
5 University of Toronto, Toronto, Canada 

Received 26 June 1981 

Abstract. We discuss two models of polymer adsorption. In one model a self-avoiding walk 
on a D-dimensional lattice interacts with a ( D  - 1)-dimensional hyperplane; in the other 
model, this walk must also lie in or on one side of this hyperplane. Both models exhibit 
non-analytic behaviour corresponding to a phase transition, but these phase transitions do 
not occur at the same point. We give numerical estimates of the locations of these 
transitions. 

1. Introduction 

Self-avoiding walks on a three-dimensional lattice, interacting with a plane and 
restricted to lie on one side of (or in) the plane have been studied as a model of excluded 
volume effects in the adsorption of polymers at a solid-liquid interface. Silberberg 
(1967) developed a mean field treatment of this model, and some early Monte Carlo 
work was carried out by Clayfield and Lumb (1966) and McCrackin (1967). Several 
groups of workers have enumerated short walks exactly, and obtained information on 
longer walks by extrapolation techniques (e.g. Lax 1974a, b, Ma et a1 1978). Also there 
are a few results on bounds and the existence of limits for the partition function 
(Whittington 1975). One can also make contact with surface magnetism through the 
Ds + 0 limit of Ds-component spin systems where, in this limit, the coefficients in 
high-temperature expansions of the layer and surface susceptibilities turn out to be 
related to the numbers of self-avoiding walks, confined to a half-space, having respec- 
tively one or both of their ends in the bounding plane (Barber et a1 1978). 

In this paper we deal with the relationship between the foregoing model and one in 
which the walk, while interacting with the plane, is not confined to lie on one side of that 
plane. Adsorption of a polymer at a liquid-liquid interface probably lies somewhere 
between these two models. 

We consider the D-dimensional hypercubic lattice (D z= 2), whose vertices are 
points in D-dimensional Euclidean space with integer coordinates t = (x, . . . , y). An 
n-step walk on the lattice is a sequence of vertices w = {zo, zl, . . . , 2,) such that zi and 
zi+l differ by unity in exactly one of their coordinates. The walk is self-avoiding if no 
two of the zi are identical; and, for brevity, we call it an  SAW. Let dnu be the set of 
n-SAWS with zo = 0 (i.e. which start at the origin) and with exactly U + 1 vertices in the 
hyperplane x = 0. We say that the walk visits the hyperplane U + 1 times. Let dzu be 
the subset of dnv such that xi b 0 for all i = 0, 1, . . . , n (i.e. the x component of every 
vertex on the walk is non-negative). We shall call these walks positive. We write anu and 
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a:v for the number of n-sAws in si?,,,, and d:c respectively, and we define the 
generating functions 

0=0 

" 
A:(@)= 1 a:,, e"-. 

u = O  

We shall prove in B 2 the following rigorous results. 
(i) The limits 

A ( @ )  = lim n-l log A , ( w ) ,  
n + m  

(1.2) 

(1.3) 

A'(@) = n-rm lim n - l  log A : ( w ) ,  (1.4) 

exist for all w. 

inequalities 
(ii) These limits are convex non-decreasing continuous functions of w satisfying the 

max(K, K'+w)sA+(w)sA( (O)smax(K,  K + w ) ,  (1.5) 

where K is the connective constant of the D-dimensional lattice and K' is the connective 
constant of the corresponding (D- 1)-dimensional lattice (for a definition of the 
connective constant, see Hammersley (1957)). 

(iii) There exist criticaI values wo and WO' defined by 

~ o = S U p { w :  A ( w ) = K } ,  WO' = sup{w: A'(@) = K }  (1.6) 
and 

A ( w )  > A'(w) if w > wo. 

(iv) These critical values satisfy 

0 s w O ~ w 0 +  S K - K ' ,  

wO'-woa 
[log(l +e-*")] log 2 
4 K  + 4 log(l+ e-'") * 

It follows from these results that A ( w )  = A'(w) = K for w C 0 and so remain constant in 
that range, while A ( w )  and A'(w) are strictly increasing functions of w for w > wo and 
w >WO'  respectively. Hence A ( w )  and A'(w) must be non-analytic at w = wo and 
w = W O '  respectively. The foregoing results may be compared with previous work 
(Whittington 1975): namely that (for D = 3) 

max(K, K r  + w ) s lim inf n -' log A: ( w )  
"+CO 

s l i m  sup n-' log A : ( w )  s max(K, K + w ) ,  (1.10) 
n-m 

which, of course, implied the existence and constancy of A'(w) = K for w S 0. 
The inequality (1.9) is sufficient to prove rigorously that the two models have 

different phase transition points. But numerically, it is a weak result: the best numerical 
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estimates of K inserted into (1.9) yield 

0.021 1 when D = 2, 
0.0049 when D = 3, 

w0'-wrJL (1.11) 

which may be contrasted with the computer estimates of wo and w: given below. We 
may also note from (1.8) that wo and w: must converge to zero as D+m, because 
K - K' + 0 as D + 43. We believe that wo = 0 for all values of D L 2, but we have been 
unable to prove this. 

The upper bounds for wo and w: given in (1.8) can be strengthened slightly to 

(1.12) -1 1 K w:d2K-~'-Shlh (se ), 

W O  S 2K - K' - sinh-' cosh K .  (1.13) 

Numerically, (1.12) gives 

WO' d 0.8503 for D = 2, w:a0.5311 forD=3,  (1.14) 

and (1.13) gives 

wo d 0.7407 for D = 2, wo d 0.4900 for D = 3. (1.15) 

These may be compared with (1.8), which yields 

00' s 0.9702 for D = 2, W :  s 0.5738 for D = 3, (1.16) 

or with (1.8) and (1.9) combined, which yield 

wo d 0.9491 for D = 2, w 0 d  0.5689 for D = 3. (1.17) 

The corresponding theory for walks that are not necessarily self-avoiding is much 
simpler and exact results can be found (Hammersley 1982). If bars are used to denote 
the corresponding expressions for P6lya random walks, then WO = 0 and 60' = 

There have been a number of attempts to estimate w: and how A+(w)  depends on 
w, using series analysis techniques (e.g. Ma eta1 1978 and references therein). In P 3 we 
report exact values of uno and a:* for n d 21 on the square lattice ( D  = 2) and for n d 14 
for the simple cubic lattice (D = 3). We use standard ratio techniques (see e.g. Gaunt 
and Guttmann 1974) to estimate A ( w )  and A+(@) and thence wo and W O ' .  These 
estimates suggest that wo < 0.04 for D = 2 and wo < 0.03 for D = 3. The numerical data 
are consistent with the conjecture w 0 = 0  in both cases. We estimate that 00' lies 
between 0.5 and 0.6 for D = 2 (cf 00' = 0.37 for D = 3 (Ma et a1 1978)). 

log[2D/(20 - l)]. 

2. Proof of results 

The sets d," and are difficult to handle directly. Instead we approach them 
indirectly through the more tractable sets and 93:" defined below. We recall, in 
these definitions, that an n-sAw is a sequence of distinct points w = {zo, zl, . . . , z,} with 
zo = 0, and that xi  and yi respectively denote the first and last coordinates of the point zi. 

Let W, denote the set of n-SAWS that satisfy 

O =  YO Yi  c y ,  ( i  = 0 ,  1, . . . , n -1) (2.1) 
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and let W, denote the set of n - s A w s  that satisfy (2.1) and the additional condition 

0 = x o =  x,. (2.2) 

Let 24: be the set of n-SAWS that belong to W, and also satisfy 

o = x o s x j  ( i  = 1 , 2 , .  . . , n ) .  (2.3) 

Then define gnu and W:, to be the subsets of W,, and 93; respectively that have 
precisely U + 1 visits. We write b,, and b:, for the number of n-SAWS in W,, and W:u 
respectively. Finally define the generating functions 

n n 

U =o U =O 
B,(w)  = 1 b,, euw, B : ( w )  = 1 bLu evw 

2.1. 

We first establish the existence of the limits 

~ ( w )  = lim n - l  log ~ , ( w ) ,  B'(w) = lim n-' log B; ( w ) .  (2.5) 
n + x  n-tm 

The proof is the same for both limits, so we deal only with B ( w ) .  
Let w ={zo,  zl,. . . , z,} be a given n-SAW belonging to W,,, and let w'= 

{zb, z ; ,  , . . , zh,} be a given n'-SAW belonging to W,,~,~, where n' and U' are any other 
values of n and U. Remembering that rb = 0, consider the walk 

(2.6) 

The notation w 0 w', which we shall use hereafter without further explicit mention, 
indicates that the walk w' has been shifted bodily without rotation so that its first point 
coincides with the last point of w. The two walks combined in this way form an 
( n  + n')-SAW, because (2.1) ensures that w cannot intersect the shifted w'. Moreover 
(2.2) ensures that w 0 w' has precisely U + U'+ 1 visits. Hence w 0 w' is a member of 
W,+n,,u+u'. Each given pair of walks w and w' leads to a distinct w 0 w' in and 
therefore 

w0w'={zo,z1,. . . , Z , , Z , + Z ; , f , + Z ; , .  . . , Z , + Z h ' } .  

Hence from (2.4) 

and therefore 

logB,(w)+logB,,(w)SlogB,+,,(w)+log(n + n ' +  1). (2 .9)  

Also, there are at most 2 0  possible choices for the direction of any step in a SAW. So 
b,, c ( 2 0 ) " ,  and thus 

(2.10) 

so 

log B , ( w )  C n log(40 e'"'). (2.11) 
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Now (2.11) shows that, for each fixed w, -log B,(w) is bounded below by a linear 
function of n ; and (2.9) shows that -log B, ( U )  is a generalised subadditive function of 
n, because XZ’1 n-* log(n + 1) is a convergent series. So we can now apply the theory of 
generalised subadditive functions (Hammersley 1962). This establishes the existence 
of the limit B ( w )  in (2.5). 

2.2. 

The next step is to prove that 

lim n-l log A, ( w )  = lim n-l log B, (0) (2.12) 

with a similar relation for A: and B:. Since gnu is a subset of d,”, we have anu 3 b,, ; 
and therefore (2.12) will be proved as soon as we establish that 

n+m n-m 

lim sup n-l  log A,(w) G lim n-l log B , ( w ) .  
n-m n+m 

(2.13) 

Consider any given member of d,,, say w ={zo, z l , .  . . , z,}. The hyperplane 
y = maxi yi is called the upper tangent of w, and the hyperplane y = mini yi is the lower 
tangent of w. Let j be the smallest integer such that yi = mini yi, and let k be the largest 
integer such that y k  = maxi y i .  We call the initial segment { Z O , Z I ,  . . . , zi} the head of w, 
and the final segment {zk, z&+~, . . . , z,} the rail of w. We now employ a technique 
(Hammersley and Welsh 1962) for converting w into a member of the set %,,+I defined 
in (2.1). We reflect the head of w in the lower tangent of w and the tail of w in the upper 
tangent of w. This gives a new walk w’. We then repeat the process on w ’ (i.e. we reflect 
the head of w f  in the lower tangent of w‘ and the tail of w’ in the upper tangent of w f ) ;  
and we continue in this fashion until eventually we obtain a walk w” which is unchanged 
by the operation, because the first point of wf f  lies on the lower tangent of w” and the last 
point of wf f  lies on the upper tangent of w”. Thus wf f  satisfies y i  s y ;  s y : .  It is easy to 
see that W” has the same number of visits as the original walk w (because reflections do 
not change any x coordinate), and that w” is a SAW. The point z; may no longer be at 
the origin, but it must lie on the hyperplane x = 0, and so, by a bodily shift of the whole 
of w f f  in the direction of the y axis, we can bring the first point of w” to the origin without 
altering the number of visits on wf f .  Finally we add an extra step in the direction of the y 
axis to the end of w ’ ~ .  The resulting walk, denoted by w * ,  will be a member of %n+l; and 
w* will have either U + 1 or U + 2 visits, the latter possibility only arising if the extra step 
at the end of w” created an extra visit. 

In general, starting from two different members of dnu, we may get the same walk 
w*; but it can be shown (Hammersley and Welsh 1962) that at most ecJn different 
members of d,, can lead to the same w* in %,+,, where c is some absolute constant. 
Hence 

(2.14) c J n  
a n u  s e  max(c,+l,,, cn+l,u+l), 

where c , + ~ , ~  is the number of members of %,+, having precisely U + 1 visits. Hence 

A , ( o ) s e  c J n + l W l C  n + l  ( ) (2.15) 

where 

(2.16) 
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The next step is to partition Wn into subclasses, placing two walks in the same 
subclass if they have the same final point. Since an n -SAW, starting from the origin, must 
be entirely enclosed in a hypercube of side 2n centred at the origin, there will be at most 
(2n + l)D subclasses. Let Cnvk denote the number of n-sAws with u + 1 visits in the 
kth subclass, where k = 1, 2, . . . , K s (2n + l)D. For given k,  consider two walks w 1  
and w 2  both belonging to the kth subclass of Wn and having v1 + 1 and v2  + 1 visits 
respectively. Let w; denote the reflection of w2 in the upper tangent of w2. We regard 
w ;  as being read backwards, i.e. the first point of w ;  is the reflection of the last point of 
w 2  and the last point of w; is the reflection of the first point of w2. Let w 3  be the walk 
obtained by following first w 1  and then w;, This will be a 2n-SAW with either v l  + v 2  + 1 
visits or u1 + v2  + 2 visits (according as the last point of w1 is or is not on the hyperplane 
x = 0). Moreover, the last point of w 3  will be on the hyperplane x = 0; and so, if we add 
an extra step in the direction of the y axis to the end of w3,  we shall obtain a member of 
B2n+1 with u l +  uz+2 or u l+uz+3  visits. Each distinct pair of walks w 1  and w 2  will 
yield a distinct member of B2n+l in this way. So 

(2.17) 

(2.18) 

(2.19) 

and hence, by Cauchy’s inequality, 

From (2.15) and (2.20) 

A n ( w )  c (2n +5)D+1’2 exp(cJn + ~ / U ~ ) B : I ~ ’ , ~ ( W ) ,  (2.21) 

and hence 

lim sup n-l log An(@) s lim sup(2n)-’ log B 2 n + 4 ( W )  = lim n-l log & ( U ) ,  (2.22) 
n-W n -a3 n-tm 

because the limit on the right-hand side of (2.22) exists. This proves (2.13) and hence 
(2.12). The proof of the analogous relation for A : ( w )  is exactly similar, because the 
foregoing argument does not affect any inequality of the type x i  0. Thus we may 
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define the limit functions 

A(w) = lim n-' log A,(o)  = lim n-l log &(U) ,  

A+(@) = lim n-' log A:(") = lim n-' log B: (U) .  

n+m n+m 

n+m n-m 

(2.23) 

2.3. 

It is obvious from the definition of A,(w) in (1.1) that A,(o) is a non-decreasing 
function of w, and, for fixed n, A,(@) is a polynomial in eo and so bounded in any fixed 
closed interval of values of w. Consequently (Hardy et a1 1934), to establish that 
log A,(w) is a convex function of w, it is enough to prove that 

for all real w1 and oz. But, by Cauchy's inequality 

2 

2 ( 2 uno exp[$v(wl + w2)]) = A:(hw1 +hwz), (2.25) 
u=o 

which proves (2.24). Now, if the limit of a sequence of convex functions exists, that limit 
is also a convex function. Hence A(w), and similarly A + ( w ) ,  defined by (2.23) are both 
non-decreasing convex functions of w for all real w. 

2.4. 

In this section we shall establish the inequalities (1.5). Consider the set 8, of n -SAWS 
w = {zo, zl, . . . , z,} that satisfy lzo - z,I = 1, which implies that n must be odd; and let pn 
be the number of members of 8,. It is known (Hammersley 1961) that 

lim n-'logp,=K (n odd). (2.26) 
n-m 

Suppose w belongs to B,, and let zj be the first point of w such that xi = mini xi.  Write 
6 = -ti + (1,0, . . . , 0) and consider 

wf ={O, Z j + &  zj+1+j, .  . . , z,+& zo+& z1+&. . . , zi-1+4, Z j - l - z j } .  (2.27) 

It is easy to verify that w f  E Moreover, distinct w E 8, yield distinct w f  E SZ:+2,1. 

Suppose w SO. Then, if n is odd, 

(2.28) w p,-;! e s U:' eo SA:(o) GAn(w) SAn(0) = Sn, 

where s, is the number of n-SAWS. Since 

lim n-l log s,, = K (2.29) 
n-m 

by the definition of the connective constant K ,  we have 

K SA+(@) s A ( w )  s K ( O S O )  (2.30) 

on taking logarithms of (2.28), dividing by n, and letting n + 00 through odd values of n. 
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Suppose, on the other hand, that w 2 0. Let s; denote the number of n -SAWS wholly 
confined to the (D- 1)-dimensional hyperplane x = 0. Then, again by the definition of 
K i ,  

n-m lim n-' log sk = Kf .  (2 .31)  

But sk = ai,. Hence 

sk eno =a:,, enw < A : ( w ) < A n ( w ) < s , ,  enw. (2 .32 )  

Take logarithms of (2.32),  divide by n, and let n +CO. We obtain 

K i + w  < A + ( o ) S A ( w ) <  K + w  (w 3 0 )  (2 .33)  

and now (1 .5)  follows from (2.30) and (2.33) combined. 
Further, (1.5) shows that A'(w) and A ( w )  are bounded in any closed interval of 

values of w. It follows from the convexity of these bounded functions that they are 
actually continuous convex functions of w,  possessing left-hand and right-hand deriva- 
tives for all finite w (Hardy et al 1934). 

2.5. 

We now return to a consideration of the sets $23"" and 93:". Consider an n -SAW w E W,,. 
We classify the points of w as either visits, denoted by V, or non-visits, denoted by N. 
Under this classification the sequence w = {zo,  zl, . . . , z,} can be written as an ordered 
sequence of symbols V or N, in which we may bracket together like symbols into runs: 
for example, w = (VVV)(NN)(V)(NNN) . . . (VV) = V3N2VN3 . . . V2. Each bracketed 
run of V-symbols will be called an incursion and each bracketed run of N-symbols will 
be called an excursion. Since to and z ,  are necessarily both visits, the first and last 
symbols in w must both be V. Hence w is an alternating sequence of incursions and 
excursions, beginning and ending with an incursion. So, if w has u 3 0 excursions it will 
have u + 1 incursions and vice versa. We write B,,, for the subset of W,, consisting of 
n - s ~ w s  with exactly U + 1 visits and u + 1 incursions. Reference to the argument used 
to prove (2.7) also shows that 

bnvubntu'uz b n + n , , c + c s , u + u  (2 .34)  

where b,,, is the number of members of W,,,. Similarly, writing b:,, for the number of 
members of B:,,, the subset of W,,, satisfying x i  3 0, we have 

b :vub :rwfu'  b : + n ' , w + u ~ , u + u ~ .  (2 .35)  

We shall now establish the necessary and sufficient conditions that W,,, shall not be 
empty. Since xo = 0, yn-' < y ,  by (2 .1)  and (2 .2) ,  and Iz, - = 1, we must have 
x,-~ = 0. So z, -~ is also a visit, and the final incursion of w must contain at least two 
visits. The remaining incursions each contain at least one visit. Hence w has at least 
u + 2 visits. Thus U + 1 3 u + 2 is necessary. If any excursion contained only one 
non-visit, the walk could not be self-avoiding because it would have to return upon its 
track in leaving and entering the hyperplane x = 0. Hence each excursion contains at 
least two non-visits; and the total number of points on w must therefore satisfy 
n + 1 a v + 1 + 224, which is another necessary condition. If u = 0, there are no excur- 
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sions so n f 1 = U + 1 .  Hence 

either U = 0 and U = n 

or l s u < u s n - 2 u  
(2.36) 

are necessary conditions for W,,, to be non-empty. We shall show that the conditions 
(2.36) are also sufficient. Since we can always find, trivially, an n-sAw lying wholly in 
the hyperplane x = 0 and satisfying (2.1) and (2.2), the first alternative in (2.36) is a 
sufficient condition. So let n, U, U be any integers satisfying the second alternative in 
(2.36).  Then there exist non-negative integers k, l, m such that U = 1 + 1 ,  U = U + 1 + m, 
n = 2u + U + k. The walk w = VNkC2(VN ) V has the required values of n, U, U ; and 
it can be realised as a member of W,,, by taking its steps in the directions of the x and y 
axes only, as illustrated for two particular cases in the diagrams below. 

2 I m+2 

4 Y  

t y  

Q 
I 

k = 1, 1=2,  m =0, k = 2 ,  I =0, m =2 .  

In the case of a:,,, each incursion (except perhaps the first) must contain at least two 
visits, for otherwise the walk would not be self-avoiding. So U + 1 a 2(u + 1 )  - 1 is 
necessary. The remaining conditions in (2.36) also hold because Wf, is a subset of 
Bnu,. We find by the methods used above that the necessary and sufficient conditions 
for Bf, to be not empty are 

either U = 0 and U = n 

or 2 s 2 u s u s n - 2 u .  

2.6. 

Now let V denote the set of pairs of real numbers (a, p )  such that 

O s a s l ,  o s p s 1 ,  a + p = 1 ;  

let A be the set of pairs of real numbers (p, 4) such that 

either ( p ,  q )  = (0 ,  1) Or o < p < q  < 1 - 2 p ;  

and let A' be the set of pairs of real numbers (p, q )  such that 

either ( p ,  q )  = ( 0 , l )  Or 0 < 2p 6 4 1 - 2p. 

(2.37) 

(2.38) 

(2.39) 

(2.40) 
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Thus, in terms of the points A. = (0, 0), AI = (0, l), A2 = (i, f), A3 = (a, t )  in the ( p ,  q )  
plane, 

(i) A consists of the interior of the triangle AOAIAZ together with the interior of the 
side AIAz and the point Al; 

(ii) A+ consists of the interior of the triangle AoA1A3 together with the interiors of 
the sides AI& and AOA3 and the points A1 and A3. 

Comparison of (2.36) and (2.39) shows that b,,, > O  or b,,, = 0 according as 
(u /n ,  u / n )  does or does not belong to A. Similarly b:,, > O  or b:,u = 0 according as 
(u /n ,  u / n )  does or does not belong to A'. 

Let p ,  q be rational numbers such that ( p ,  q )  E A, and write I, for the set of integers n 
such that np and nq are both integers. Evidently Ipq is a principal ideal in the set of all 
integers. Suppose that n and n' are positive integers belonging to I,. From (2.34) we 
have 

0 c log bn,nq,np +log b n ' . n ' q , n ' p  

log b ( n t n ' ) , ( n + n ' ) q . , n + n ' , p  s l o g  ~ n t n , .  (2.41) 

This asserts that log b,,,,,,, is a superadditive function of n for positive IE E Ip4. Hence 
there exists a number 8(q, p )  such that 

(2.42) 

Moreover, if p ' ,  q' are rational numbers such that ( p ' ,  q')  E A, and n is a positive 

12.43) 

Divide (2.43) by 2n and let n +03 through positive integers belonging to the inter- 
section of I,, and I,,,, and I (p+p~) ,2 , (q+q3) /2 .  From (2.42) we obtain 

o ~ 4 e ( q , p ) + ; 8 ( q f , p ' ) ~ 8 ( t q + ~ q ' ,  ; p + $ p ' ) s ~ .  (2.44) 

0 c 8(q, p )  = lim log b,,,,,,, s K ,  

where the limit in (2.42) is taken as n + 03 through positive integers belonging to Ipq. 

integer belonging to both I,, and IPzqr, then by (2.34) 

log bn,nq,np +log b n , n q ' , n p ' s  log b 2 n , n ( p + p ' ) , n ( q + q ' ) *  

It follows (Hardy et a1 1934) that 

Oca8(q, p ) + P B ( q ' ,  P ' ) S  8(aq +&', a p  + P P ' ) <  K (2.45) 

for all rational (a,  p )  E V and all rational ( p ,  q )  E A and all rational ( p ' ,  4') E A. We can 
now extend the definition of e(q, p )  to all real ( p ,  q )  E A by continuity: namely, in the 
interior of A, it is the continuous concave function of p ,  q (concave in both variables 
considered as a two-dimensional vector) that agrees with the previously defined values 
of 8 at rational p ,  q ;  while, on the interior of the side AlA2, it is the continuous concave 
function of 4 = 1 - 2 p  (concave in the single variable q )  that agrees with the previously 
defined values of 8(q, $-$a) at rational q satisfying f < q < 1. 

If ( p ,  4) does not belong to A, we have bn,nq,np = 0, either in accordance with the case 
b,,, = 0 or by definition for other (e.g. irrational) values of p ,  q ;  and hence we define 
8(q, p )  = --CO for ( p ,  q )  not belonging to A. 

So now 8 ( q , p )  is defined for all p ,  q, and it is a concave function of these two 
variables considered as a two-dimensional vector. Also @(q,  p )  is finite on the whole of 
A, and continuous in the interior of A. But it is not continuous on the boundary of A. 

Similarly we can define a concave function 

8'(q, p )  = lim n-l log b~,nq,np (2.46) 
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which satisfies 0 d 8+(q, p) d K for (p, q )  E A+ and 8+(4, p) = -00 for (p, q )  not belonging 
to A+; and 8+(q, p) has similar properties of continuity with respect to A’ instead of A. 

2.7. 

Next we define 

(2.47) 

Suppose we are given (a, p )  E V and any prescribed E > 0. Then for given 4, q’ we can 
find p, p’  depending on q, 4’ respectively, such that 

d 8(q, P I  + E ,  (2.48) e(q‘) 4 e(q‘, p‘ )  + E. 

Hence, by (2.45) and the fact that a + p  = 1, 

( ~ e ( q ) + p e ( 4 ’ ) d a e ( 4 , p ) + p 8 ( 4 ’ , ~ ~ ) + ~  

s e(aq +pq’, a p  +pp’ )  + E  s e(aq +pql) + E ;  (2.49) 

and since E > 0 is arbitrary in (2.49) we conclude that 8(q)  is a concave function of 4, 
namely 

(2.50) 

Moreover, if 0 < q d 1, there exists a value of p such that (p, 4 )  E A by virtue of (2.39). 
Hence, by (2.42), we have 

o s e(q) G K (2.51) 

If either q s0 or q > 1, no (p, q)can liein A, andso 8(q)  = -a whenq d o o r  4 > 1. The 
boundedness of 8(q)  in O <  q d 1 and the concavity in (2.50) ensures that 8(q) is a 
continuous function of q for 0 < q < 1. 

Similarly @(q) is a concave function for all q ;  it is continuous for O < q  < 1 and 
bounded for 0 < 4 d 1; and 8+(q) = -00 when q d 0 or q > 1. 

a m )  + p e w )  s 8((Yq +W. 

(0 < q d 1). 

2.8. 

We shall next prove that 

= SUP + w), A ’ ( w )  = sup {8+(q) + qw} ;  (2.52) 

that is to say, A and A’ are the so-called maximum transforms of 8 and 8+ respectively. 
Prescribe an arbitrary E > 0, and consider any given rational (p, q )  E A. Then, for all 

sufficiently large positive n E Ipq we have by (2.42) 

(2.53) 

4 4 

exp[ne(q, p )  - n ~ l d  bn,nq,np s bn,nq.  

Hence 
n 

V S 0  

B,(w) = 1 6,” eno B bnSn4 enqw sexp[nO(q, p )  - nE + nqw]. (2.54) 

Take logarithms of (2.54), divide by n, let n + 00 through values of I,, and use (2.23) to 
obtain 

A ( w ) B @ ( q , p ) + q w - E .  (2.55) 
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Then let E + 0, so that 

A ( ~ ) w w ) + v .  (2.56) 

Now (2.56) is true for all rational (p, q )  E A, and hence it is true for all real (p, q )  E A by 
continuity, in view of the manner used in § 2.6 to define O(4, p )  for irrational ( p ,  q )  E A. 
Since (2.56) thus holds for all ( p ,  q )  when w is fixed, we obtain 

To establish the opposite inequality, we recall that superadditive functions approach 
their limit from below (Hammersley 1961). Hence, if n, U, U are any positive integers 
such that b,,, > 0, we have (u/n, u/n) = ( p ,  q )  E A; and from (2.42) 

(2 .58)  -1  -1 n log bnuu .= n log bn,nq,np s m, p )  s m) = e ( u / n ) .  
Hence 

bnuu sexp[ne(v/n)l. (2.59) 

This is also trivially true if bnuu = 0. Hence 

s ( n  + ~ ) ~ e x p ( n  sup{e(q)+qw}). (2.60) 

Taking logarithms of (2.60), dividing by n, and letting n + 00, we deduce from (2.23) 
that 

4 

(2.61) 

Thereupon (2.57) and (2.61) yield the first equation in (2.52). The other equation in 
(2.52) follows in the same way from a consideration of b:uu, f3+ and A+. 

2.9. 

In 0 2.7 we showed that 8 ( q )  = --CO if either q d 0 or q > 1. Hence we can write (2.52) in 
the form 

= max( sup {m +qui, sup + 4 ~ ) )  (2.62) 
O < q G €  E s q s l  

for any 0 < E  < 1. In (2.62) we take w < 0, and use (2.30) and (2.51) to obtain 

sup { B ( q )  + qw}, K + EW 
O<q<c 

(2.63) 
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because K + EO < K and qw < 0. Since B ( q )  is concave and continuous for 0 < q c E and 
E > 0 is arbitrary, (2.63) implies that 

lim 8 ( q ) = ~ .  (2.64) 
q-o+ 

Similarly, from A'(w) and 8+(q), we can show that 

lim e + ( q ) = ~ .  (2.65) 
4-o+ 

2.10. 

Next define 

(2.66) 

Also define 

A*(o) = sup {8*(q) + 40). (2.67) 
4 

From (2.51) and (2.66) we have e(q)  s e*(q), and hence (2.52) and (2.67) yield 
A(w) sA*(w). (2.68) 

On the other hand, by (2.66), (2.67), (2.52) and (1.5) 

From (2.68) and (2.69) we deduce 

A ( ~ )  = sup {e*(q) + qw). 
4 

(2.70) 

2.11. 

Since 8(q) is concave for all q and continuous for 0 < q < 1, we see from (2.64) and 
(2.66) that e*(q)  is concave for all q and continuous for 0 c q C 1. Hence (Hardy et a1 
1934) B* (q )  possesses a right-hand derivative at q = 0, namely 

eo = lim q-l{e*(q)- K}, 
q+o+ 

(2.71) 

and 
e*(q) G K +Cleo (2.72) 

for all q. Now A(o) is continuous for all o; so, by the definition of wo in (1.6), 

K =A(wO)=sup {e*(q)+qwo). (2.73) 
4 

Consider any el < eo. According to (2.71) there exists some q1 > 0 such that 
e*(ql) > K +qlel. (2.74) 

Hence, by (2.73), 

K 3 e*(q1) + qiOo> K +ql(& -k WO),  (2.75) 



552 J M Hammersley, G M Torrie and S G Whittington 

which implies 

el < 0. (2.76) 

Since this is true for arbitrary < eo, we conclude that 

-eo. (2.77) 

On the other hand, 8*(q) = ---CO for q < 0 and q > 1; so (2.70) yields 

A(w)= sup { e * ( q ) + q ~ } s  sup { ~ + ~ ( 8 o + w ) } ~ K + + ~ + w  (2.78) 

by (2.72). If w > wo, the left-hand side of (2.78) is strictly greater than K .  Hence 
eo + w > 0 for any w > wo, and therefore 

o r q r 1  o r q s 1  

wo>-eo. (2.79) 

From (2.77) and (2.79) and the fact that e*(q) = @(q)  for q >O,  we obtain 

wo = lim q - l ( ~  - e(q)) .  (2.80) 
q-+o+ 

Similarly, with only trivial and obvious changes of notation, we have 

WO' = lim q - l ( K  - e+(q)), (2.81) 
q+o+ 

and therefore 

WO' - wo = Iim q-l(e(q) - e+(q)). (2.82) 
q+O+ 

2.12. 

To prove (1.9), we need to find a positive lower bound for the right-hand side of (2.82). 
As a first step towards this end, we return to a study of the function @(q, p). We begin 
by considering rational numbers p ,  4 such that 

(2.83) 

(2.84) 

Since (2.84) is stronger than (2.40), we see that (p, q )  E A'. Suppose that n is a positive 
integer belonging to Iw, and consider any given n-SAW w belonging to 98:,nq,np. Then w 
has n + 1 points, nq + 1 visits, and np + 1 incursions. We are going to modify w in two 
stages: in the first stage we shall replace w by another SAW w1, and in the second stage 
we shall replace w1 by a second new SAW w2. 

2.13. 

To deal with the first stage from w to w l ,  let the points of w be w = {zo, zl, . . . , zn}. We 
replace each zi by zi + (1,0,  . . . , 0) whenever zi is not a visit, while those zi that are 
visits are left unchanged. This breaks the SAW w ;  and to restore the property that 
successive points of a SAW are unit distance apart, we must interpolate some extra points 
si + (1, 0, . . . , 0) for all those values of i < n such that zi is either the first or the last point 
of an incursion of w, with the exception that i = 0 is not to be treated in this way unless zo 
is the lasf point of an incursion. This gives the SAW w1. The diagrams below illustrate 
the relationship between w and w l .  
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Relationship between w and w1 when z0 is not the last point of an incursion. 

+ Y  
I 

P 

+--J - -D  X 
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? 

ocp - - -  O X  

I 4 I 
I 

L O - A - - - O X  

w Y 

Relationship between w and wl when zo is the last point of an incursion. 

The number of extra points interpolated is twice the number of excursions in w ;  so w1 
has n + 2np + 1 points. It also has nq + 1 visits and np + 1 incursions because the 
number of visits and the number of incursions are both unchanged. Clearly w1 is a SAW, 

because w is a SAW; and also w1 satisfies all the conditions (2.1), (2.2) and (2.3). Hence 
w1 E 3;+2np,nq,np.  

2.14. 

For the second stage of modification, we shall interpolate some further points in w1 to 
obtain w 2 .  Consider any particular incursion in w1 that has k 3 4 visits in that incursion. 
Then we could insert [&I - 1 excursions into that incursion, given that each such extra 
excursion has exactly three steps, of which the first and third are parallel to the x axis 
and the second lies in the hyperplane x = 1. The following diagram shows the situation 
for an incursion of w1 in the particular case k = 7. 

?Y 

Incursion of w1 
with k = 7  

Two possible 
excursions 
in w1 
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These inserted excursions cannot destroy the self-avoidance of the new walk w2,  
because in the construction of w 1  we shifted out of the way any points that might have 
interfered with these new excursions. We speak of possible new excursions because, as 
we shall see presently, in constructing wz from w 1  we shall only utilise some of these 
possibilities. Thus it is best to think in terms of the places where new excursions might 
be placed. If k 5 4 is even, these places are fixed in the incursion, if the incursion is not 
the last incursion. On the other hand, if k z 4 is odd, we take these places to be as early 
on the incursion as possible (as in the diagram above). This ensures that the places are 
fixed when w1 is given. The last incursion of w1 requires an additional gloss, namely that 
the places are taken as early as possible on the last incursion whether or not k 3 4  is 
even. This gloss ensures that, however many of the places we utilise for extra 
excursions, the resulting walk wz will still satisfy conditions (2 .1) ,  (2 .2)  and (2 .3) .  

Suppose that w 1  has exactly ek incursions with k visits each. The case k = 1 can only 
arise if zo is the last point of an incursion, so el  = 0 or 1 .  Counting up the number of 
visits and incursions on wl,  we have 

k e k = n q + l ,  e k = n p + I ,  
k a l  k z l  

and hence 

(2 .85)  

(2.86) 

The number of places for possible extra excursions, in deriving w z  from w l ,  is therefore 

( [ $ k ] - l ) e k  = 1 ( [ $ k ] - l ) e k a  1 ($k-2)ek  a f n q - 2 n p - 2 .  
k a4 k a 2  k 

(2.87) 

Now let f and g be rational numbers such that 

0 < f < g < f q  - 2p, (2 .88)  

this being possible in view of (2.84). Then, provided n is any sufficiently large positive 
integer belonging to the intersection of I ,  and If*, we can by virtue of (2.87) and (2.88) 
find ng fixed places on w 1  at which extra excursions could be placed; and we can choose 
any nf of these fixed places for the actual places at which extra excursions are to be 
inserted in deriving w z  from w l .  

The walk w 2  obtained in this fashion will have the same number of visits as w l ,  2nf 
more points than w 1  and nf more excursions than W I ;  and W Z E  %~+~,,~+~,,f , , ,~,, ,~+,,f .  
Further, each distinct choice of the nf places and each distinct member of w E B:,nq,np, 
from which we originally started in § 2.12, will lead to a distinct w z  E %~+Z,,~+Z,,~,~~,,,~+,,~ 

Hence 

(2.89) 

because (:a is the number of ways in which we could choose the nf places from amongst 
the ng available places. A straightforward calculation, based upon Stirling’s formula 
for the factorial function, reveals 

n-CO 1im K1 log( ;;) = g [ - p  log p - ( 1  - p )  log(1 - p ) ]  (2 .90)  

where 
o < p  = f / g  < 1 .  (2 .91)  
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Take logarithms of (2.89), divide by n, and let n +CO through members of the 
intersection of I ,  and IfB' From (2.46) we obtain 

@+(q, P) + g [ - P  1% P - (1 - P I  log(1 -P)l 

P+f  ) (1 + 2p + 2f)@+( 1 + 2p + 2f * 1 + 2p + 2f 
4 (2.92) 

For brevity write 

41 = 4/(1+ 2p + 2f), p1=(p+f)/(1+2p+2f). (2.93) 

Suppose that p, q, f, g are any real numbers satisfying (2.83), (2.84) and (2.88). Then 

= 1 - 2 ~ 1 .  (2.94) 
2P +2f =2pl < 2P +4 -4p< 4 1 

1+2p+2f 1+2p+2f=q1< 1+2p+2f 
O< 

1 + 2p + 2f 

Reference to (2.40) shows that (pl, ql) lies strictly in the interior of A'. Since 8+(q, p) is 
continuous in the interior of A+, we see that (2.92), previously established for rational p, 
q, f, g ,  remains true for all real p, q, f, g satisfying (2.83), (2.84) and (2.88). Further, by 
continuity, we may let g + 54 - 2p in (2.88). Hence 

e+(q, P) + (2.95) 

for any real p, q satisfying (2.83) and (2.84), and any real f such that 
- ~P)[ -P  log P - (1 - P I  lOg(1 - P I ]  (1 +2p + 2f)e+(ql, pl) 

o <  f <;q -2p = f/p. 

It is also clear from (2.93) and (2.94) that 

(2.96) 

O < q l  < q < 1 (2.97) 

because p + f > 0 and p1 > 0. By virtue of (2.97), there exists (a, p )  E V such that 

W P + f )  
= 1 - q + 2p + 2f 

(1 - 4x1 + 2P + 2f) 
1-q+2p+2f ' a =  

and also 

= P2, 
( l -q)(p+f)  
1 - q + 2p + 2f 

ap1+po= 

where p2 is defined by (2.100). 
Since f?+(q, p) is concave, (2.98) and (2.100) yield 

ae+(q, pl) +pe+(l ,  0)  p2) e+(q). 

From (2.95), (2.99) and (2.101) we obtain 

e+(q, P ) + ( $ ~ - ~ P ) [ - P  logP-(l-P)log(l-P)i 

Also (2.46) gives 

e+(i ,  0)  = lim n-' log bfo = K r ,  
n +CO 

(2.98) 

(2.99) 

(2.100) 

(2.101) 

(2.102) 

(2.103) 
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because b f o  is the number of n-SAWS that are entirely confined to the (D-1)- 
dimensional hyperplane x = 0. Define the function 

(2.104) * = (L(4) = 2(@+(4) --4K')/(1 -41, 

and note that f = ($4 - 2p)p according to (2.96). Then (2.102) becomes 

6+(4, P )  + (44 - ~ P ) [ - P  log P - (1 - P I  log(1 - P )  - p41- P(L e + w .  (2.105) 

In this we put 
p = (1 +e')-', (2.106) 

which satisfies O < p < l  and maximises the left-hand side of (2.105), as an easy 
calculation shows. This gives 

(2.107) e+(4, p ) + &  - 2 p )  log(1 +e- ' ) -p+s  o+(q) .  

2.15. 

Suppose we are given 4 with O <  4 < 1. We can find a sequence {pi(4)}i=1,2,,,. such that 

(2.108) 

in view of (2.47). Since Bf(4, p )  = -CO if (p, 4) does not belong to A+, we can suppose 
without loss of generality that ( p i ( 4 ) ,  4) belongs strictly to the interior of A+ for all i: that 
is to say 

0<pi(4)<min(iq, 4-44) (i = 1,2, .  . .). (2.109) 

!im e + ( ~ ,  ~ i ( 4 ) )  = 8+(4), r+m 

So the sequence {pi(4)} is bounded and has at least one limit point p ( 4 )  satisfying 

(2.110) 

By replacing { p i ( 4 ) }  by a suitable subsequence of itself, we may suppose without loss of 
generality that 

1 1 1  Osp(q)~min(zq ,  2-34).  

lim ~ i ( 4 )  = ~ ( 4 ) *  (2.111) 
i+m 

Note that we do not, of course, claim that e'(4, ~ ( 4 ) )  = 8+(4) since we have not 
established that @(4, p) actually attains its supremum 0+(4). 

2.16. 

We shall next prove that 

(2.112) 

where 4(q) is defined by (2.112). We note in the first place that (p, 1) E A' if and only if 
p = 0 by virtue of (2.40). Also O+(l, p) = -a if (p, 1) If A+. Hence 

(2.113) e+(i) = e+(i ,  0)  = K', 

by (2.103). Suppose O< S < q. Then, by the concavity of d ( 4 )  

(2.11 4) 
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Let S+O+ in (2.114), and use (2.65) and (2.113) to obtain 

e'(q) 3 (1 - q)K + qK' > qK'. 

Hence, from (2.104), $(q)>O, and thence (2.112) yields 

(2.115) 

4 ( 4 ) < t 4 .  (2.116) 

Now suppose, for the sake of a contradiction, that (2.112) is false; so that 

0 a p ( q )  < 444) 4 4 .  (2.117) 

It follows from (2.117) that we may without loss of generality suppose that 

0 pi(q) < $4 ( i  = 1 , 2 , .  . .) (2.118) 

by choosing a similar subsequence of the original pi (q)  if necessary. Now (2.110) and 
(2.1 18) show that all the pi (q)  satisfy (2.84), and therefore we may substitute p = pi (q)  in 
(2.107). We then let i+co  and use (2.108) and (2.111) to obtain 

9+(4)  + ($4 - 2 p ( q ) )  lodl  +e-") - P ( ( I ) $  @+(4), (2.119) 

and hence 
p ( q )  3 4 ( q ) ,  (2.120) 

which contradicts (2.117). So (2.117) is false, and we have proved (2.112). 

2.1 7. 

Now we shall prove that 

P )  3 e+(q, P )  + P  log 2 (2.12 1) 

whenever ( p ,  q )  lies strictly in the interior of A+. By the continuity of 9(q, p )  and 
8+(q, p )  in the interior of A+, which is contained in the interior of A, it is enough to prove 
(2.121) for rational p ,  q. So let n be a positive integer in I,, and consider any 
w E i3:,nq,np. If we reflect some of the np excursions of w in the hyperplane x = 0, we 
shall obtain a new SAW w1 E Bn,nq,np The total number of different ways in which we can 
reflect these excursions is 2np, including the possibilities that all or none of the 
excursions are reflected. These 2"' SAWS are all different members of i3n,nq,np 

Moreover, if we started with two different SAWS w and w', the 2"' SAWS obtained from 
w would all be different from the 2"' SAWS obtained from w'. Hence 

(2.122) 

Take logarithms of (2.122), divide by n, and let n + 00 through members of I,, and we 
obtain (2.121). 

np + 
bn.nq,np 3 2 b n , n q . n p  

2.18. 

From (2.121) we have a fortiori 

3 e+(q, P) + P  log 2. (2.123) 

In (2.123) we can substitute p = pi (q)  using the sequence (2.109) defined in 0 2.15. Let 
i + m ,  use (2.108) and (2.111) to obtain 

9 ( q ) 3 e + ( d + m  log2. (2.124) 
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Then (2.1 12) yields 

~ 4 ) = 3 + ( 4 ) + 4 ( 4 ) l o g 2 .  

Hence, by (2.82), 

WO' - wo ,Z lim inf 4- '4(4) log 2. 
q-o+ 

However (2.65) and (2.104) show that 

(2.125) 

(2.126) 

lim $ ( 4 ) = 2 ~ .  (2.127) 
q-o+ 

On the other hand 4- '4 (4 )  is a continuous function of q!t according to (2.112). Hence 

(2.128) 

and (1.9) follows from (2.126) and (2.128). 

2.19. 

Next we turn to the proof of (1.7). We fix w > wo, and write (2.52) in the form 

this being possible because A ( w )  a A ' ( w )  B K ,  while O(4) and 8+(4) are both -CC for 
4 s 0 or 4 > 1. We can then find a sequence { e ( w ) }  such that 

(2.130) 0 < q i ( w )  < 1 

and 

A'(w) = lim {8+[qi (w) l+qi (w)w} .  (2.131) 

Moreover, by considering a suitable subsequence of the bounded sequence (2.130), we 
can suppose without loss of generality that 

lim 4 i ( w )  = 4 ( w ) .  (2.132) 

1-m 

i-rm 

There are then three cases to consider: 

0 < 4 ( w ) <  1, 

4 ( w )  = 0, 
4 ( w )  = 1. 

(2.133) 

(2.134) 

(2.135) 

2.20. 

First consider the case (2.133). We have seen that 4(4 )  is a continuous function of 4 in 
O e q  < 1, so that (2.125), (2.129), (2.131) and (2.132) yield 

A ( w )  2 lim sup {6(cli) + 4 ~ )  3 lim sup {8'(4i) + qiw + 4 (4i) log 2) 
i -m i-m 

~ A + ( w ) + 4 [ q ( w ) ]  log 2. (2.136) 
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But (2.104) and (2.112) show that 4 [ 4 ( 0 ) ] > 0  when (2.133) holds. This proves (1.7) in 
this case. 

2.21. 

Next we consider the case (2.134). From (2.131) and (2.134) we obtain 

A'(w) = K ,  (2.137) 

by virtue of (2.130) and (2.65). However, A ( w )  > K when w > wo, so (1.7) is true in this 
case. 

2.22. 

The case (2.135) is more difficult, and to deal with it we first prove that 

lim sup 6 ( 4 )  = K'. 
q+l -  

(2.138) 

Let s; be the number of n-sAws that are completely confined to the hyperplane x = 0. 
Then we know that 

n-oo lim n-l log s; = K'. (2.139) 

Consider any arbitrary A > K ' .  Then, by (2.139), there exists a number yA, depending on 
A, such that 

S; Q yA eA", yA21, (2.140) 

for all positive integers n. 
Let (p, q )  be any rational point in the interior of A, let n be a positive integer 

belonging to I,, and consider a SAW w E Bn.nq,np. There are np + 1 incursions in w, and 
each of these incursions is a SAW wholly confined to the hyperplane x = 0. Suppose the 
ith incursion has vi + 1 points on it. Then 

np+l  

i = l  
C ( v i + l ) = n q + l ,  

the total number of visits on w. Hence 

C vi = n(4 -PI. 
i 

(2.141) 

(2.142) 

The first incursion of w starts at the origin z = 0;  the remaining incursions may start at 
any one of the remaining n points of w. Hence the starting points of the incursions can 
be chosen in at most (zp) different ways. By (2.140) and (2.142), the steps of the 
incursions can be formed in at most 

(2.143) 

different ways. There are also n - n4 steps on w, which do not belong to incursions, and 
can be chosen in at most (2D)n(1--q) ways. Hence 

(2.144) 



560 J M Hammersley, G M Torrie and S G Whittington 

Take logarithms, divide by n, and let n -* CO through members of I,, and we find from 
(2.90) 

P )  -P 1% p - (1 - p )  lOg(1 - p )  + p log TA + (1 - 4) lOg(2D) + A (4 - p ) .  (2.145) 
Suppose 3 < q < 1. Then, by (2.39) 0 < p < $( 1 - q )  < f because (p, q )  lies in the interior 
of A; so (2.145) yields 

6(q, p )  -+(I -4) log f(1- 4) -;(I + 4) log f(1 f 4 )  +$(I -4)  log TA 

+ (1 - 4 )  lOg(2D) + Aq, (2.146) 
because - p  log p - (1 - p )  log(1- p )  is an increasing function of p for 0 < p < 5. The 
right-hand side of (2.146) is independent of p; so we may write 6(q )  instead of 6(q, p )  on 
the left-hand side of (2.146). By the continuity of 6(q )  in 0 < q < 1, we have thus proved 
that 

6(q )  -$(I -4) log f(1- 4) -$(I + 4) log +(I f 4) ++(I - 4 )  log TA 
+ (1 - q )  log(2D) + Aq (2.147) 

for all real q satisfying $< q < 1. Letting q -* 1-, we deduce 

lim sup B ( q )  s A. 
4-1- 

However, A is any arbitrary number greater than K'. So 

lim sup 6 ( q )  S K'. 
q - l -  

(2.148) 

(2.149) 

Since 6(q )  and 6+(q)  are concave functions, bounded above by K and satisfying (2.64) 
and (2.65), they are non-increasing functions of q for q>O. Also 6 ( 4 ) > 6 + ( q ) 2  
6'(l) = K' by (2.113). Hence (2.149) implies 

lim 6 ( 4 )  = lim e+(q)  = K'. (2,150) 
q + l -  4-1- 

2.23. 
hTnwt-n\nm<A- n -t;nnrJ n ~ v r n b  thnt  1~ ,-x c 1 P . a +  

L 1 ~~- 1 ----- ---- - - - _ _  - - - _ _ _ _  - - - - ._ - _ _  -. 

p = $U -4) (2.15 1) 

and let n be a positive integer belonging to Ipq. Let w be a SAW belonging to 9:,nq,np, 
which is possible because of (2.37). The total number of non-visits on w is n + 1 - 
(nq + 1) = 2np, and these occur on np excursions. Each excursion must have at least two 
non-visits; and therefore every excursion on w has exactly two non-visits. Hence, if we 
remove all the excursions on w (replacing each of these three-step excursions by a single 
step connecting the first and last points of that excursion), we shall obtain an nq-SAW WI 
lying wholly in the hyperplane x = 0. Conversely, given any nq-SAW lying wholly in the 
hyperplane, we can reconstruct a member of 98:,nq,np by replacing np of its steps by 
three-step excursions. Different nq-SAWS w1 and different positions of these excursions 
will all lead to different members of B:,nq,np. Hence 

(2.152) 
where h' is the number of ways that np steps can be selected from nq steps to provide 

+ I  
b: ,nq,np = h snq,  
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these excursions. The last step of w1 is not available for replacement, because w would 
not then satisfy (2.1) and (2.2); nor may two successive steps on w1 be replaced, because 
w would not then be self-avoiding. Hence h' is the number of ways of selecting np 
integers vl, . , . , vnp from the set {1,2, . . . , nq - 1) such that 

1 d v l < v 2 < .  . . < v n p s n q - l  and vi+1 > vi + 1. (2.153) 

Such a selection can be placed in (1, 1) correspondence with a set of np distinct integers 
selected from {1,2, . . . , nq - np}, namely 

(2.1 54) 1 c U1 < v2- 1 < v3-2c . . .<v,,-np+lSnq-np. 

Hence 

From (2.152) and (2.155) we obtain 

and thence, on letting n + 00 through members of I,, we have 

(2.155) 

(2.156) 

(2.157) 

Since the left-hand side of (2.157) is a continuous function of q for f C q < 1, equation 
(2.157) holds for all real q in 3s q s 1. The sum of the third and fourth terms in (2.157) 
is concave for f d q s 1, and so they are not less than f(  1 - q) log f. Hence 

e+(q) B e+(q, f - fq) 2 q d  - $( 1 - 4) log( 1 - 4) - f(i - 4) log 2 

and 

2.24. 

( 3 c q c 1 ) .  (2.158) 

Now, 
(2.131), we have from (2.52), (2.130), (2.135) and (2.150) 

the sake of a contradiction, suppose that ( 135) holds. Letting i+co in 

sup{e+(q)+qw}=A+(o)= K ' + o ,  (2.159) 
4 

and hence 

e +(q ) + 90 s ' + ( k q  c 1) (2.160) 

which gives 

(e ' (0 )  - K')/(l-q) < 0 (id q < 1). (2.161) 

Putting q = 1 -$exp[-2(o + K ' ) ]  in (2.158) and (2.161), we obtain the contradiction 
that o +$ log 2 ~ 0 .  This shows that (2.135) is false; and the proof of (1.7) is complete. 



562 J M Hammersley, G M Torrie and S G Whittington 

2.25. 

Finally, we shall prove (1.12) and (1.13).  We shall require an equation for 8(q, i - t q )  
like (2.157). We consider a rational q such that $<q s 1 and we define p by (2.151).  
Then ( p , q ) ~ A  by (2.39),  and we can find w E B ~ , ~ ~ , ~ ~  when n is a positive integer 
belonging to lw. As in § 2.23, we see that each of the excursions on w are three-step 
excursions, so that we can delete them to obtain an nq-sAw w1 lying wholly in the 
hyperplane x = 0. Corresponding to (2.152) we obtain 

bn,nq,np = hs Lq, (2.162) 

where h is the number of ways that np steps can be selected from nq steps of w 1  to 
provide these excursions. However, these excursions can now fie on either side of the 
hyperplane x = 0. As before, the last step of w1 is not available for selection. So we 
have to select np integers vl, . . . , vnP from the set { 1 , 2 ,  . . . , nq - 1 )  and we have to 
attach to each of them symbols ql, . . . , qnP (each equal to 0 or 1 )  to indicate which side 
of the hyperplane x = 0 the excursion is to occupy. So in place of (2.153) we have 

1 s v i ( v i ) < v 2 ( ~ z ) < .  . . < v n p ( ~ n p ) < n q - l .  (2.163) 

If vi = then two successive excursions lie on the same side of x = 0, so we must have 
v i + l ( v i + l ) > v i ( q i ) + l .  But if T~ # vi+l, we only require v i + l ( ~ i + ~ ) ~ v i ( ~ i ) + l .  Define 
pi = 1 or 0 according as = vi, and write f qi or 

np-1 

pi = t. (2.164) 

Then the selection (2.163) can be placed in ( 1 , l )  correspondence with the selection of 
np distinct integers from the set { 1 , 2 ,  . . . , nq - np + t}, namely 

r = l  

(2.165) 

together with any admissible selection of the vi. Suppose temporarily that t is fixed. 
Then the number of selections of integers in (2.165) is ("";?"). Moreover, the values 
of 171, 172,. . . , qnp determine and are uniquely determined by the vaiues of ql, pl, 
pz, . . . , pnp-i. Now 71 can be chosen in two ways. Also p l ,  p 2 , .  . . , pnp-l are deter- 
mined by specifying which ones, of the available np - 1 p's, are equal to 1 .  Hence the 
specification of the 7 ' s  can be made in 2("';') ways. So for fixed t, we can select the 
excursions in 

(2.166) 

different ways. Since t can take any of the values t = 0, 1, . . . , np - 1, we obtain 
np-1  

h = 2 h( t ) ,  
t=O 

Now 

(2.167) 

(2.168) 

is a strictly decreasing function of t. Hence the largest term in the sum (2.167) is h ( [ ~ ] ) ,  
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where 

np-T ) = l .  (=-+ 7 1)( n q - 2 n p + ~  

Therefore 

h ( [ T I )  c h 6 nph ( [ T I ) ,  
and thence 

lim n-l log h = lim n-l log h ( [ ~ ] ) .  
n - w  n-W 

If we put 
1 

T = fnr, 

we find from (2.151) and (2.169) that 

(3q - 1 + r ) ( l -4  - r )  = r(4q -2+r),  

and hence 

r = 1 - 2q + ($4’ +$( I  - 2q)’}’/*. 

(2.169) 

(2.170) 

(2.171) 

(2.172) 

(2.173) 

(2.174) 

Here we have to choose the positive square root in solving the quadratic equation 
(2.173), because werequire O S [ T ] S  np, given that f < q  d 1. From (2.166) and (2.171) 
and Stirling’s formula, we deduce that 

= $(3q - 1 + r )  log(3q - 1 + r )  - f (4q  - 2 + r )  log(4q - 2 + r )  

-$(I - q - r )  log(1- 4 - r )  - f r  log r. 

So, letting n + 00 through members of I ,  in (2.162), we obtain 

(2.175) 

(2.176) 

Here we have been able to insert denominators throughout because the sum of the 
coefficients of the logarithms is zero. This result, established for rational 4, persists for 
all real 4 < 4 d 1 by continuity. Writing 

Q = 2 - l / q ,  - 1 < Q ~ 1 ,  (2.177) 

we obtain 

(K - e(q, $ - f q ) ) / q  = F(Q) ,  (2.178) 

where 

F(Q)  = 2K - K’ - K Q  -;( 1 + Q) lOg{I + ($+ $QZ)l’Z} + $ ( I  - Q )  lOg{I - ($+ $Q2)”2} 

+log{Q +($+fQ*)‘/’}. (2.179) 
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Differentiating F with respect to Q, we find (after some manipulation in which 
extraneous terms cancel out) that 

1 F’(Q) = -K  -5 log{ 1 + ($ + $Q2)’/2}- $log{ 1 - ($+ $Q2)1/2} 

+log{Q + ( $ + $ Q 2 ) ’ / 2 } .  (2.180) 

We now choose Q to minimise F(Q). Thus 

F’(Q) = 0; 

and so 

(2.181) 

Also, from (2.179), (2.180) and (2.181), we have 

1 + ($+ $Q2)’/’ 

1 -($+$Cl*) 
F(Q)=2K -K’-lOg 1/2 = 2K - K I - h ,  

where 

(2.183) 

(2.184) 

Now, by (2.182) and (2.184), 

l+($+$Q2)1/2 1-($+$Q2)1/2 

(2.185) 

1 - ( ~ + ~ ~ 2 ) 1 / 2 + i + ( t + $ ~  

= -1 +cosh 2A = 2 sinh’ A. 

Since A > 0 by (2.184), we deduce that cosh K = sinh A. Hence 
1 1  

inf -8(q9 5-z4 )  = 2K - K t  cosh K. 

3 < q 4  4 
(2.186) 

But K - 8(q)  is a convex function of 4 tending to zero as 4 -* 0 + . Hence, from (2.80), 

W O  = lim 3 = inf -< K-e(q)-inf ~ - e ( q , t - t q )  
q+o+ 4 q’o 4 q=-o 4 

S 2K - K ‘  - sinh-’ Cosh K .  

This proves (1.13). 

(2.187) 

2.26. 

To obtain (1.12), we make the substitution (2.177) in (2.157), after inserting 
denominators 4 into arguments of the logarithms (for the same reasons as in (2.176)). 
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Table 1. Values of innu for D = 2. 

0 1 2 3 4 5 k 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

1 1 
3 2 1 
7 8 2 
19 18 10 
49 50 28 
131 130 78 
339 354 222 
899 926 608 

2 345 2 490 1668 
6 199 6 554 4 530 
16 225 17 514 12 296 
42 811 46 202 33 166 
112 285 122 990 89 456 
296 05 1 324 782 240 164 
777 411 862 646 645 046 

2 049 025 2 278 822 1 726 282 
5 384 855 6 044 126 4 622 384 
14 190 509 15 968 174 12 342 712 
37 313 977 42 310 562 32 974 042 
98 324 565 111 781 490 87 898 024 
258654441 295971310 234413500 

1 

12 
34 
112 
318 
956 

2 646 
7 564 
20 740 
57 842 
157 426 
433 092 

1 172 422 
3 197 050 
8 620 470 
23 365 294 
62 810 306 
169 501 498 

1 
2 
14 
40 
140 
426 

1288 
3 820 

11 014 
31 702 
89 248 
251 648 
698 100 

1941 914 
5 334 640 
14 697 726 
40 101 716 
109 710 704 

1 
2 
16 
46 
174 
538 

1712 
5 112 
15 464 
44 794 
131 204 
372 728 

1 067 440 
2 991 004 
8 432 054 
23 389 414 
65 193 582 

6 7 8 9 10 11 12 

6 
I 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

1 
L 
18 
52 
212 
670 

2 204 
6 778 
20 808 
62 154 
183 716 
537 070 

1 549 930 
4 454 472 
12 645 968 
35 860 450 

1 
2 
20 
58 
254 
818 

2 794 
8 784 
27 674 
83 962 
254 024 
750 596 

2 213 558 
6 414 988 
18 577 856 

1 
2 
22 
64 
300 
982 

3 484 
11 198 
36 136 

111 860 
344 288 

1 035 902 
3 093 404 
9 117 080 

1 
2 1 
24 2 
70 26 
350 76 

1162 404 
4 282 1358 
14 052 5 196 
46 468 17 386 
146 634 58 916 
459 944 189 468 

1405 932 605 528 
4 266 308 1 881 504 

1 
2 
28 
82 
462 

1570 
6 234 
21 240 
73 752 
241 590 
786 646 

1 
2 
30 
88 
524 

1798 
7 404 
25 654 
91 264 
304 336 

13 14 15 16 17 18 19 20 21 

13 
14 
15 
16 
17 
18 
19 
20 
21 

1 
2 1 
32 2 1 
94 34 2 1 
590 100 36 2 1 

2 042 660 106 38 2 1 
8714 2302 734 112 40 2 1 
30668 10172 2578 812 118 42 2 1  
111756 36322 11786 2870 894 124 44 2 1 



566 J M  Hammersley, G M Torrie and S G Whittington 

Table 2. Values of for D = 2. 

U 0 1 2 3 4 5 
n 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

1 
3 
7 

19 
49 

131 
339 
899 

2 345 
6 199 

16 225 
42 811 

112 285 
296 05 1 
777 411 

2 049 025 
5 384 855 

14 190 509 
37 313 971 
98 324 565 

258 654 441 

2 
* L 
8 

16 
42 

106 
282 
718 

1898 
4 906 

12 946 
33 674 
88 734 

231 718 
610 330 

1597 518 
4 207 198 

11 029 230 
29 045 886 
76 227 402 

200 754 406 

2 

10 
24 
56 

148 
384 
988 

2 572 
6 692 

17 512 
45 708 

119 772 
313 440 
822 352 

2 155 512 
5 660 424 

14 853 388 
39 031 572 

102 505 956 

2 
2 

12 
28 
78 

194 
544 

1376 
3 690 
9 510 

25 362 
65 802 

174 602 
454 974 

1 204 316 
3 146 908 
8 317 976 

21 775 920 
57 508 486 

2 
2 

14 
32 
92 

250 
674 

1830 
4 838 

12 922 
34 140 
90 798 

239 360 
634 754 

1672 128 
4 426 452 

11 657 950 
30 824 676 

2 
2 

16 
36 

110 
298 
844 

2 244 
6 256 

16 504 
45 126 

119 050 
321 898 
848 710 

2 278 494 
6 005 826 

16 050 558 

V 6 7 8 9 10 11 12 
n 

6 2 
7 2 2 
8 18 2 2 
9 40 20 2 2 

10 130 44 22 2 2 
11 356 152 48 24 2 2 
12 1018 420 176 52 26 2 2 
13 2 780 1224 490 202 56 28 2 
14 7 700 3 376 1458 566 230 60 30 
15 20 996 9 518 4 074 1722 648 260 64 
16 56 974 25 958 11 618 4 874 2 018 736 292 
17 154 488 71 944 32 066 14 078 5 784 2 348 830 
18 415 198 194460 89 306 39 242 16 926 6 812 2 714 
19 1 119 464 533 286 244 702 110 416 47 678 20 202 7 966 
20 2 991 024 1 432 790 671 502 304 440 135 454 57 514 23 948 
21 8 027 274 3 897 632 1 830 076 843 158 376 714 165 034 68 912 

13 14 15 16 17 18 19 20 21 

13 2 
14 2 2 
15 32 2 2 
16 68 34 2 2 
17 326 72 36 2 2 
18 930 362 76 38 2 2 
19 3118 1036 400 80 40 2 2 
20 9254 3562 1148 440 84 42 2 2  
21 28208 10684 4048 1266 482 88 44 2 2 



Self-avoiding walks interacting with a surface 567 

Table 3. Values of $anY for D = 3. 

0 1 2 3 4 k 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

1 
5 
21 
93 
409 

1853 
8 333 
37 965 
172 265 
787 557 

3 593 465 
16 477 845 
75 481 105 
346 960 613 

2 
4 6 
24 12 
100 84 
444 384 

1956 1724 
8 900 7 828 
40 164 35 880 
183 772 164 608 
836 804 758 212 

3 492 176 
16 116 732 
74 392 240 
343 825 152 

3 839 812 
17 574 860 
80 840 124 
371 306 084 

18 
36 50 
288 100 

1356 900 
6 472 4 456 
30 020 21 992 
141 400 106 788 
656 340 512 144 

2 441 200 
14276664 11565004 
66650852 54695876 
309769972 257656616 

3 072 848 

5 6 7 8 9 

5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

142 
284 390 

2 840 780 1086 
14 252 8 580 2 172 2 958 
73 692 44 304 26 064 5 916 8 134 
367 116 235 968 135 572 76 908 16 268 

1 817 456 1219 980 750 276 407 864 227 752 
8 805 552 6 161 280 3 965 100 2 320 168 1 213 908 
42 636 584 30 659 012 20 584 596 12 638 388 7 143 436 
204 022 244 150 626 248 104 170 920 66 832 632 39 662 020 

10 11 12 13 14 

10 22 050 
11 44 100 60 146 
12 661 500 120 292 162 466 
13 3 574 688 1 924 672 324 932 440 750 
14 21 590 520 10 440 252 5 523 844 881 500 1 187 222 

We obtain 
+ 1 1  -’ (” z - 2 q ) =  2~ - K ’ - K Q + $ ( ~  -a) lOg(1- Q)+ Q log 2Q 

4 

- f( 1 + 0) lOg(l+ Q) (0 s Q s 1). 

The right-hand side of (2.188) attains its minimum when 

Q/(l - Q2)l” = $ ey, 

(2.188) 

(2.189) 
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and this minimum is 

= 2~ - K '  - sinh-'(;e"); 

whereupon (1.12) follows from (2.81),  as in (2.187). 

(2.190) 

3. Exact enumeration results 

We have obtained exact values of an,, and a:,, for the square lattice for n s 21 and exact 
values of an" for the simple cubic lattice for n =s 14, using a modified version of a 
counting programme which has been described elsewhere (Torrie and Whittington 
1975). The results are given in tables 1-3. (The corresponding results for a i "  for the 
simple cubic lattice can be extracted from data in Middlemiss et ai (1977).) Note in 
particular that our tables 1 and 3 quote values for $anv, whereas table 2 quotes values of 
a:,, (without the factor i). 

For fixed w we calculate An(@) (equation (1.1)) and form the sequence of ratio 
estimates 

up to the largest value of n for which exact data are available. As n + 00 we expect 
p n ( w )  to converge to exp[A(w)] and we carry out the extrapolation against n-l using an 
appropriate Neville table. We form the sequence of extrapolants 

pkk) (w)  = (2k)-'(",k-''(o)-(n -2k)pkk->"(w)) (3 .2 )  

with p(,o)(w) = @,(U) .  

Our estimates for A ( w )  and A'(w) for the square lattice are shown in figure 1, and 
our estimates of A(@) for the simple cubic lattice in figure 2.  The value of K is known 

W 

Figure 1. A ( o )  and A + ( w )  for the square lattice. The broken line is the lower bound (1.5) 
and the arrows are the lower and upper bounds (1.9) and (1.12) for WO'.  
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0 0.02 0.04 0.06 0.08 
w 

Figure 2. A(w) for the simple cubic lattice. 

rather accurately from series analysis work: eK = 2.6385 for D = 2, and e" = 4.6835 for 
D = 3 (Sykes et a1 1972). 

Since we know that wo b 0 from 0 2 and Go = 0 it is tempting to conjecture that 
wo = 0. From figures 1 and 2 we see that this is reasonably consistent with the data. To 
obtain further evidence for this we look for a value of w at which we can be reasonably 
sure that A(w) > K .  In table 4 we give the Neville table, successive entries of which are 
calculated from (3.2), for exp(w) = 1.03 for the cubic lattice. Inspection of this table 
indicates that exp[A(o)] is about 4.689 and, in view of the behaviour of the linear 
extrapolants, it is most unlikely to be less than 4.687 which, in turn, is greater than 
exp(K). This indicates that 0 s wo < 0.03 for D = 3. 

Table 4. Neville table for estimating exp[A(o)] for the simple cubic lattice with exp(o) = 
1.03. 

6 4.858273 4.657 900 
7 4.826089 4.674 273 4.701 442 
8 4.812690 4.675 941 4.693 983 
9 4.795818 4.689 871 4.709 369 4.713 332 

10 4.787115 4.684 816 4.698 129 4.700 892 
11 4.776570 4.689 954 4.690 099 4.674 042 
12 4.770418 4.686 934 4.691 168 4.684 207 
13 4.763206 4.689 705 4.689 145 4.688 032 
14 4.758626 4.687 873 4.690 221 4.688 959 

The corresponding Neville table for the square lattice when exp(w) = 1.04 is given in 
table 5 .  Again, it is clear from these results that A(w) > K for this value of w so that 
wo < 0.04 for the square lattice. 

The results for A:(w) for the square lattice are rather more difficult to analyse but, 
proceeding on the above lines, it is fairly clear that A + ( 0 . 6 ) > ~  while A+(0.5) is 
indistinguishable from K.  Hence we can be quite confident that 00' < 0.6 though it is 
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Table 5. Neville table for estimating exp[A(o)] for the square lattice with exp(w) = 1.04. 

( 2 )  
CLn 

(3) 
CL" 

12 
13 
14 
15 
16 
17 
18 
19 
20 
21 - 

2.721 804 
2.713 911 
2.709 818 
2.704 197 
2.700 930 
2.696 691 
2.694 055 
2.690 734 
2.688 563 
2.685 893 

2.637 051 
2.641 753 
2.637 903 
2.641 055 
2.638 712 
2.640 393 
2.639 054 
2.640 102 
2.639 142 
2.639 905 

2.635 998 
2.640 051 
2.640 035 
2.639 137 
2.641 138 
2.638 240 
2.640 253 
2.639 013 
2.639 493 
2.639 066 

2.638 319 
2.630 337 
2.645 417 
2.637 765 
2.642 977 
2.636 597 
2.638 482 
2.640 689 
2.637 721 
2.639 197 

more difficult to form a reliable estimate of a lower bound on 00'. Within the accuracy 
of the ratio analysis which we have carried out, we suggest that WO' is probably greater 
than 0.5. In figure 1 we show the w dependence of A + ( w )  for the square lattice. The 
arrows indicate the bounds on WO' calculated from (1.9) (with W O  = 0) and (1.12), using 
numerical estimates of K and K '  (Sykes et a1 1972). 

4. Discussion 

This paper has been concerned with two models of polymer adsorption in which 
excluded volume effects are incorporated by modelling the conformation of the isolated 
polymer molecule by the conformation of a self-avoiding walk on a lattice. In each case 
the walk interacts with a lattice plane via a short-range potential. In the first model the 
walks are free to cross the lattice plane, representing the surface, while in the second 
they are constrained to lie in or on one side of this lattice plane. We show rigorously that 
the limiting free energies per step, A ( w )  and A C ( w ) ,  exist for all values of the interaction 
parameter W .  In addition there exist critical values of w, wo and W O ' ,  which are the largest 
values of w for which A ( ~ ) = K  and A+(o)=K,  respectively. We have shown that 
WO' > wo L 0 and that A ( @ )  > A ' ( w )  for w > wo. 

For walks which are not allowed to penetrate the surface (positive walks), this 
implies that WO' > 0, and, in addition, we have shown that 

w i  s2K -K'-sinh-'($e")<K -K'. (4.1) 

The bounds on WO' (shown as arrows in figure l ) ,  though numerically weak, do rule out 
the possibilities WO' = 0 (which corresponds to an infinite temperature transition) and 
WO' = K - K' (the value predicted by a mean field argument). 

We have also reported exact enumeration data on the number of walks which visit 
the surface plane a given number of times. Our analysis of these data suggests that 00 is 
probably zero for both two- and three-dimensional lattices. We have also estimated 
that 0.5 < 00' < 0.6 for the square lattice. 
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